QAPV: a polynomial invariant for graph isomorphism testing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Time Algorithm for Graph Isomorphism Testing

Earlier we introduced (M.I.Trofimov, E.A.Smolenskii, Application of the Electronegativity Indices of Organic Molecules to Tasks of Chemical Informatics, Russian Chemical Bulletin 54(2005), 2235-2246. http://dx.doi.org/10.1007/s11172-006-0105-6) effective recursive algorithm for graph isomorphism testing. In this paper we describe used approach and iterative modification of this algorithm, which...

متن کامل

Isomorphism Testing via Polynomial-Time Graph Extensions

This paper deals with algorithms for detecting graph isomorphism (GI) properties. The GI literature consists of numerous research directions, from highly theoretical studies (e.g. defining the GI complexity class) to very practical applications (pattern recognition, image processing). We first present the context of our work and provide a brief overview of various algorithms developed in such d...

متن کامل

Graph isomorphism is polynomial

We show that the graph isomorphism problem is determined in a polynomial time. This is done by showing that that two graphs on n vertices are isomorphic if and only if a corresponding system of (4n− 1)n equations in n nonnegative variables is solvable. 2000 Mathematics Subject Classification: 03D15, 05C50, 05C60, 15A48, 15A51, 15A69, 90C05.

متن کامل

A Polynomial Time Algorithm for Graph Isomorphism

Algorithms testing two graphs for isomorphism known as yet in computer science have exponential worst case complexity. In this paper we propose an algorithm that has polynomial complexity and constructively supplies the evidence that the graph isomorphism lies in P.

متن کامل

A polynomial graph extension procedure for improving graph isomorphism algorithms

We present in this short note a polynomial graph extension procedure that can be used to improve any graph isomorphism algorithm. This construction propagates new constraints from the isomorphism constraints of the input graphs (denoted by G(V,E) and G(V , E)). Thus, information from the edge structures of G and G is ”hashed” into the weighted edges of the extended graphs. A bijective mapping i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pesquisa Operacional

سال: 2013

ISSN: 0101-7438

DOI: 10.1590/s0101-74382013000200002